
O�chain Labs ArbOS 31
Security Assessment (Summary Report)

July 26, 2024

Prepared for:

Harry Kalodner, Rachel Bousfield, Lee Bousfield, Steven Goldfeder, and Ed Felten
Offchain Labs

Prepared by: Gustavo Grieco and Simone Monica

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’s request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Executive Summary 5
Project Targets 6
Project Coverage 7

1. Outdated stylus programs can be cached 8
2. AnyTrust fast confirmation will fail if the confirmer address is not a validator 10

A. Vulnerability Categories 12

Trail of Bits 3 Offchain Labs Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O'Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Gustavo Grieco, Consultant Simone Monica, Consultant
gustavo.grieco@trailofbits.com simone.monica@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

July 1, 2024 Delivery of report draft

July 1, 2024 Report readout meeting

July 26, 2024 Delivery of summary report

Trail of Bits 4 Offchain Labs Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Offchain Labs engaged Trail of Bits to review the security of a number of Nitro pull requests
(PRs) related to Stylus and BoLD, as described in Project Coverage.

A team of two consultants conducted the review from June 24 to July 1, 2024, for a total of
two engineer-weeks of effort. With full access to source code and documentation a manual
code review processes.

Observations and Impact
We reviewed a number of small changes in the Nitro codebase related to Stylus cache costs
and the safe handling of return memory from EVM contracts. Additionally, from the BoLD
side, we reviewed a PR related to the Sepolia deployment and the addition of fast
confirmation support for AnyTrust chains.

We found two issues: a low-severity issue related to an incorrect usage of the Stylus
program version, and a medium-severity issue related to an unexpected failure of AnyTrust
fast node confirmations. Offchain provided fixes for both issues; these were included in the
scope and reviewed during the audit.

Trail of Bits 5 Offchain Labs Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

Nitro
Repository https://github.com/OffchainLabs/bold

Version dd8cf656831ecb25c9e9001fc65148c362cb5c5d

Type Solidity

Platform Ethereum/Arbitrum

Trail of Bits 6 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/bold

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following PRs:

● #2423 and #194 change how to specify programs to cache using their addresses
instead of the codehashes.

● #2424 adds a cost for returning data in external calls similar to EVM.
● #2425 and #333 define a Stylus v2 and prepare the code for an upgrade.
● #2426, #2430 and #2436 separate the cached cost from the init cost when using the

program cache.
● Individual commits from #193 were also covered:

○ Commit ec065286c6ff04d3854f3c1d4483e17527dca845 specifies Sepolia
config values.

○ Commit d6e62dfb7473ecea69a2faecf3e50eccad84efbe includes specific
Sepolia config addresses.

○ Commit c60647e83c34bf9955275026807cb1dbf741da6b increases the
number of transactions required to wait for confirmation during Sepolia
deployment.

● #187 and #215 allows anyTrustFastConfirmer role to immediately create and
confirm an assertion, making sure the procedure is resistant to block reorgs.

We reviewed this code for usual flaws in Solidity code as well as any issues that would allow
a malicious to block, delay, or disrupt Stylus or Solidity program execution inside an
Arbitrum rollup. We also reviewed for potential consensus issues introduced by the ArbOS
upgrade that enable these Stylus changes. We also checked for possible misconfiguration
of the new parameters and features in the modified parts of either Stylus and BoLD code.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● We have not reviewed in detail how the Nitro or ArbOS codebases evolved. Instead,
we used the diff/PRs provided by Offchain Labs to bound the scope of this
assessment.

Trail of Bits 7 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/pull/2423
https://github.com/OffchainLabs/nitro-contracts/pull/194
https://github.com/OffchainLabs/nitro/pull/2424
https://github.com/OffchainLabs/nitro/pull/2425
https://github.com/OffchainLabs/go-ethereum/pull/333
https://github.com/OffchainLabs/nitro/pull/2426
https://github.com/OffchainLabs/nitro/pull/2430
https://github.com/OffchainLabs/nitro/pull/2436
https://github.com/OffchainLabs/nitro-contracts/pull/193
https://github.com/OffchainLabs/nitro-contracts/pull/193/commits/ec065286c6ff04d3854f3c1d4483e17527dca845
https://github.com/OffchainLabs/nitro-contracts/pull/193/commits/d6e62dfb7473ecea69a2faecf3e50eccad84efbe
https://github.com/OffchainLabs/nitro-contracts/pull/193/commits/c60647e83c34bf9955275026807cb1dbf741da6b
https://github.com/OffchainLabs/nitro-contracts/pull/187
https://github.com/OffchainLabs/nitro-contracts/pull/215

1. Outdated stylus programs can be cached

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-STY-1

Target: arbos/programs/programs.go

Description
A Stylus program can be cached to spend less gas the next time it gets called. However, the
property that only updated programs can be cached does not hold for Stylus version 2.

The SetProgramCached function performs the actual caching, and one of the
preconditions is that the caching reverts if the program version is 0 and the cache flag is set
to true. While this works correctly for Stylus version 1, when it is upgraded to version 2,
the precondition will not catch outdated Stylus programs whose versions are set to 1. This
makes it possible for outdated programs to be cached.

func (p Programs) SetProgramCached(
emitEvent func() error,
db vm.StateDB,
codeHash common.Hash,
address common.Address,
cache bool,
time uint64,
params *StylusParams,
runMode core.MessageRunMode,
debug bool,

) error {
program, err := p.getProgram(codeHash, time)
if err != nil {

return err
}
expired := program.ageSeconds > am.DaysToSeconds(params.ExpiryDays)

if program.version == 0 && cache {
return ProgramNeedsUpgradeError(0, params.Version)

}
...

}

Figure 1.1: Snippet of the SetProgramCached function
(arbos/programs/programs.go#L370-L389)

Exploit Scenario
Multiple Stylus programs with version 1 are cached, consuming unnecessary space.

Trail of Bits 8 Offchain Labs Security Assessment
PUBLIC

https://github.com/OffchainLabs/nitro/blob/e6168fcca8098b3e931273d5f4dc7be09e218c04/arbos/programs/programs.go#L370-L389

Recommendations
Short term, update the condition to error if the program version is different from the
current Stylus version.

Long term, consider avoiding hard-coding constants when possible. This would remove the
requirement for them to be changed when an upgrade is executed. Instead, use variables
where they need to be changed in a single place.

Trail of Bits 9 Offchain Labs Security Assessment
PUBLIC

2. AnyTrust fast confirmation will fail if the confirmer address is not a
validator

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-STY-2

Target: RollupUserLogic.sol, RollupAdminLogic.sol

Description
The AnyTrust confirmation uses certain validator-only functions that will fail unless the
confirmer address is added as a validator.

AnyTrust confirmation allows privileged users to fast confirm a state of a rollup, if the
AnyTrust assumptions are met. In order to do that, it is necessary to define a special
address as the AnyTrust fast confirmer using the following function:

/**
* @notice set the anyTrustFastConfirmer address
* must also call `setValidator` to set the same address as a validator to work
* old fast confirmer need to be removed from the validator list manually
* @param _anyTrustFastConfirmer new value of anyTrustFastConfirmer
*/
function setAnyTrustFastConfirmer(address _anyTrustFastConfirmer) external {

anyTrustFastConfirmer = _anyTrustFastConfirmer;
emit OwnerFunctionCalled(31);

}

Figure 2.1: The setAnyTrustFastConfirmer function

This special user should be able to confirm nodes using the fastConfirmNextNode and
_confirmNextNode functions:

/**
* @notice This allow anyTrustFastConfirmer to confirm next node regardless of deadline
* the anyTrustFastConfirmer is supposed to be set only on an AnyTrust chain to
* a contract that can call this function when received sufficient signatures
*/
function fastConfirmNextNode(bytes32 blockHash, bytes32 sendRoot) external whenNotPaused

{
require(msg.sender == anyTrustFastConfirmer, "NOT_FAST_CONFIRMER");
_confirmNextNode(blockHash, sendRoot, true);

}

function _confirmNextNode(
bytes32 blockHash,

Trail of Bits 10 Offchain Labs Security Assessment
PUBLIC

https://docs.arbitrum.io/how-arbitrum-works/inside-anytrust

bytes32 sendRoot,
bool isFastConfirm

) internal {
requireUnresolvedExists();

uint64 nodeNum = firstUnresolvedNode();
Node storage node = getNodeStorage(nodeNum);

if (!isFastConfirm) {
// Verify the block's deadline has passed
node.requirePastDeadline();

}

// Check that prev is latest confirmed
assert(node.prevNum == latestConfirmed());

Node storage prevNode = getNodeStorage(node.prevNum);
if (!isFastConfirm) {

prevNode.requirePastChildConfirmDeadline();
}

removeOldZombies(0);
…

Figure 2.2: Snippet of the _confirmNextNode and the fastConfirmNextNode functions

However, the removeOldZombies function still contains a check that will allow only
validators to execute it:

function removeOldZombies(uint256 startIndex) public onlyValidator whenNotPaused {
uint256 currentZombieCount = zombieCount();
uint256 latestConfirmedNum = latestConfirmed();
for (uint256 i = startIndex; i < currentZombieCount; i++) {

while (zombieLatestStakedNode(i) < latestConfirmedNum) {
removeZombie(i);
currentZombieCount--;
if (i >= currentZombieCount) {

return;
}

}
}

}

Figure 2.3: The removeOldZombies function

Exploit Scenario
A AnyTrust fast confirmer attempts to call fastConfirmNextNode but gets a revert
because its address was not previously added as a validator.

Recommendations
Short term, either modify the fastConfirmNextNode function to properly add or remove
the AnyTrust fast confirmer addresses, or clearly document the requirement.

Long term, make sure to add tests for each new or modified code before deployment.

Trail of Bits 11 Offchain Labs Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 12 Offchain Labs Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 13 Offchain Labs Security Assessment
PUBLIC

